Abstract

This paper proposes a model algorithm control (MAC) method for the path tracking control of differentially steered wheeled mobile robots (WMRs) subject to nonholonomic constraints. The continuous dynamic model of the wheeled mobile robot is presented and used as the model to be controlled. The MAC controller is designed based on the sampled-data representation of the system. In this paper the case that there exists time delay in the control input is also considered. A time discretization method using the Taylor series and the zero-order-hold (ZOH) assumption is proposed to discretize the continuous dynamic model of the WMR. This time discretization method is especially useful in the case of the time delayed system. It can provide finite dimensional and more accurate discretized form model of the mobile robot with input time delay and convert it into a general nonlinear time discretized form to which the MAC controller can be applied. Simulations are conducted to show the performance and feasibility of the proposed control strategy. In these simulations the WMR is controlled to track two difference reference paths such as the “8” shape path and the circular path. The bounded inertial parameters uncertainties and some disturbance are also considered in the model of the control system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call