Abstract

Video analysis often requires locating and tracking target objects. In some applications, the localization system has access to the full video, which allows fine-grain motion information to be estimated. This paper proposes capturing this information through motion fields and using it to improve the localization results. The learned motion fields act as a model-agnostic temporal regularizer that can be used with any localization system based on keypoints. Unlike optical flow-based strategies, our motion fields are estimated from the model domain, based on the trajectories described by the object keypoints. Therefore, they are not affected by poor imaging conditions. The benefits of the proposed strategy are shown on three applications: 1) segmentation of cardiac magnetic resonance; 2) facial model alignment; and 3) vehicle tracking. In each case, combining popular localization methods with the proposed regularizer leads to improvement in overall accuracies and reduces gross errors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.