Abstract

The Model Reference Adaptive Controller (MRAC) is implemented for the model of nine- level Cascaded H Bridge (CHB) asymmetrical Quasi Z Source Inverter (QZSI). The proposed MRAC controller forces the output current to be sinusoidal, with low current harmonics, and to be in phase with the line voltage. The advantages of using MRAC over conventional proportional-integral control are its flexibility, adaptability, and robustness; moreover, MRAC can self-tune the controller gains to assure system stability. Since the QZSI is a non linear system, it is hard to design the controller. MRAC is simple and predict the future values of output variables using a dynamic model of the process comparing conventional PI controller. In this work, the performance of MRAC is compared with conventional PI controller based on the settling time and harmonic distortion. The simulation results clearly showed that the MRAC can lead to reduction in the settling time and harmonic distortion of the obtained output for the system. In addition to this the cascaded nine level QZSI with asymmetrical input voltage in the ratio of 1:3, whose performance is analyzed to provide a boosted output voltage and due to the asymmetrical input configuration the output voltage can be obtained with more voltage levels with lesser number of component thus lead to better outputvoltage quality with the reduction in filter size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.