Abstract
Software-Defined Network is an emerging networking paradigm that enables intelligent and flexible network management. Specifically, the design of the control plane is crucial. Therefore, in order to avoid a single point of failure, multiple controllers are deployed constantly in a distributed manner on the control plane. In this paper, we propose a controller placement approach based on multiple objectives (MODECP), including network delay, network security, load-balancing rate, and link occupancy. In the controller placement stage, an improved multi-objective differential evolution algorithm is proposed to search for controllers’ positions and assign switches to controllers reasonably. Furthermore, an improved affinity propagation algorithm is proposed to obtain the number of controllers placed in the network partition stage, comprehensively considering the delay, node security, and load. Simulations are performed based on several topologies from Internet Topology Zoo. Extensive results show that the proposed algorithm can realize trade-offs among multiple objectives and improve network performance in delay, security, controller load, and link occupancy compared to the single-objective based approach. Moreover, compared with the genetic algorithm and random placement algorithm, the proposed algorithm performs better with low latency, high security, low load rate, and low link overhead.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.