Abstract

We reexamine the convolution approximation commonly used in the mode-coupling theory (MCT) of nonergodic states of classical fluids. This approximation concerns the static correlation functions used as input in the MCT treatment of the dynamics. Besides the hard-sphere model, we consider interaction potentials that present a short-range tail, either attractive or repulsive, beyond the hard core. By using accurate static correlation functions obtained from the fundamental measures functional for hard spheres, we show that the role of three-body direct correlations can be more significant than what is inferred from previous simple ansatzs for pure hard spheres. This may in particular impact the location of the glass transition line and the nonergodicity parameter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call