Abstract
Purpose: The goal of this work is to investigate the use of contrast enhanced computed tomographic (CT) features for the prediction of mutations of BAP1, PBRM1, and VHL genes in renal cell carcinoma (RCC). Methods: For this study, we used two patient databases with renal cell carcinoma (RCC). The first one consisted of 33 patients from our institution (UT Southwestern Medical Center, UTSW). The second one consisted of 24 patients from the Cancer Imaging Archive (TCIA), where each patient is connected by a unique identi?er to the tissue samples from the Cancer Genome Atlas (TCGA). From the contrast enhanced CT image of each patient, tumor contour was first delineated by a physician. Geometry, intensity, and texture features were extracted from the delineated tumor. Based on UTSW dataset, we completed feature selection and trained a support vector machine (SVM) classifier to predict mutations of BAP1, PBRM1 and VHL genes. We then used TCIA-TCGA dataset to validate the predictive model build upon UTSW dataset. Results: The prediction accuracy of gene expression of TCIA-TCGA patients was 0.83 (20 of 24), 0.83 (20 of 24), and 0.75 (18 of 24) for BAP1, PBRM1, and VHL respectively. For BAP1 gene, texture feature was the most prominent feature type. For PBRM1 gene, intensity feature was the most prominent. For VHL gene, geometry, intensity, and texture features were all important. Conclusion: Using our feature selection strategy and models, we achieved predictive accuracy over 0.75 for all three genes under the condition of using patient data from one institution for training and data from other institutions for testing. These results suggest that radiogenomics can be used to aid in prognosis and used as convenient surrogates for expensive and time consuming gene assay procedures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.