Abstract

We show that optically induced long-period grating (OLPG) is a particular case of inter-modal Bragg-scattering four-wave mixing (BS-FWM). To carry out such analysis, a vector model for the inter-modal BS-FWM was proposed and further tailored to investigate the energy transfer induced by OLPGs. Both processes, BS-FWM and OLPGs, have been proposed for in-line all-optical mode switching in transmission systems with space-division multiplexing (SDM). In this scope, we demonstrate that the bandwidth of OLPGs is larger than the BS-FWM. Furthermore, we show that OLPG-based mode switching can take place in two windows, if both pump beams are launched near the zero value of the differential mode-group delay, and the central wavelength and the bandwidth of such windows can be tuned by properly adjusting the wavelength and the optical power of the pump beams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.