Abstract

We demonstrated mode-switching of self-motion coupled with diffusion of molecules at a solid/liquid interface. A camphor boat moved spontaneously on water and the mode of self-motion depended on the setup of the boat. When a camphor disk was connected to the center of a larger plastic plate, intermittent motion (alternating between rest and rapid motion) was observed. When the position of the camphor disk was changed from the center to one of its edges, the period of intermittent motion decreased, and intermittent motion changed to continuous motion. The features of this self-motion and mode-switching were qualitatively reproduced by a numerical calculation using a mathematical model that incorporates the distribution of camphor molecules at the solid/liquid interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.