Abstract
We perform canonical quantization of the Stueckelberg Lagrangian for massive vector fields in the conformally flat patch of de Sitter space in the Bunch-Davies vacuum and find their Wightman two-point functions by the mode-sum method. We discuss the zero-mass limit of these two-point functions and their limits where the Stueckelberg parameter ξ tends to zero or infinity. It is shown that our results reproduce the standard flat-space propagator in the appropriate limit. We also point out that the classic work of Allen and Jacobson [“Vector two-point functions in maximally symmetric spaces,” Commun. Math. Phys. 103, 669 (1986)] for the two-point function of the Proca field and a recent work by Tsamis and Woodard [“Maximally symmetric vector propagator,” J. Math. Phys. 48, 052306 (2007)] for that of the transverse vector field are two limits of our two-point function, one for ξ → ∞ and the other for ξ → 0. Thus, these two works are consistent with each other, contrary to the claim by the latter authors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.