Abstract
Plasmons play a central role in the properties of gold nanoparticles (AuNPs). Plasmons in a AuNP are influenced by neighboring ones, resulting in hybridized bonding dipole modes and red-shifted resonance peaks in the extinction spectra. Previous studies have mainly focused on plasmon coupling among spherical AuNPs (AuNSs). Here, we explore plasmonic interactions between AuNSs and anisotropic gold nanorods (AuNRs), which have longitudinal (LO) and transverse (TR) plasmon modes. We successfully assemble AuNSs around AuNRs ("AuNR@AuNS"), observing shifts in both the LO and TR modes in the extinction spectra due to directional coupling. Selectively binding AuNSs to the ends of AuNRs ("AuNR═AuNS") leads to predominant plasmon coupling along the LO direction. Our simulation studies reveal that exclusive LO or TR coupling occurs only when AuNSs attach to the center of either the end or the side of AuNRs. This study provides a valuable guideline for selectively exciting plasmons in desired nanogaps when multiple nanogaps are present.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.