Abstract

We simulate and analyze the mode properties and propagation effects of orbital angular momentum (OAM) modes in a ring fiber. A ring fiber with 0.05 up-doping is designed in simulation to support up to 10 OAM modes while maintaining single-mode condition radially. With a multiple-ring fiber, tens of OAM modes can be potentially multiplexed to greatly enhance the system capacity and spectral efficiency. The mode index difference can be maintained above 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-4</sup> over hundreds of nanometers optical bandwidth. Higher order OAM modes' azimuthal intensity and odd-order OAM modes' azimuthal phase show better tolerance to the fiber ellipticity. Moreover, higher order OAM modes also have longer 2π and 10-ps walk-off length. After 600-km propagation, OAM <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0,4</sub> mode shows <; 10-ps mode walk- off, even in a ring fiber with 1% ellipticity. Also, in such an elliptical fiber, the well-aligned OAM modes with different charges have <;-20 dB intermode crosstalk. The improvement of the circularity for the ring fiber is expected to reduce the crosstalk and increase the demultiplexing efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call