Abstract

The formulation of Schrödinger-like equations for nonlinear pulse propagation in a single-mode microstructured optical fiber with a strongly frequency-dependent guided-mode profile is investigated.A correct account of mode profile dispersion in general necessiates a generalization of the effective area concept commonly used in the generalized nonlinear Schrodinger equation (GNLSE). A numerical scheme to this end is developed, and applied to a solid-core photonic bandgap fiber as a test case. It is further shown, that a simple reformulation of the GNLSE, expressed only in terms of the traditional frequency-dependent effective area, yields a good agreement with the more complete theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.