Abstract

AbstractThis is an overview of the mode of formation of the Nile Gorge in northern Egypt. It is based on the interpretation of the Shuttle Radar Topography Mission (SRTM) data along with detailed analysis of landsat image, geological map and seismic data. The results show that the current course of the Nile was caused by a differential uplift of two plateaus: Ma'aza, to the east, and Western Desert plateau, to the west of the river. This uplift is caused by dynamic forces resulting from subsurface convection processes. It also contributed to the formation of several drainage systems, basins and structural features. Abundant faults and fractures that are parallel to the Nile Valley on both flanks that are associated with uplift are proven to be contemporaneous with formation of the river. We conclude that understanding of the uplift is crucial to visualizing the Nile course and its geodynamic formation. The information derived from the SRTM data reveals invaluable knowledge in support of the presented remotely sensed geological features. The paper clearly explains the stages of formation of the Nile segments in space and time and structural controls on the path of the Nile River in Egypt. Copyright © 2015 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call