Abstract

Piperamides, which are secondary metabolites in the genus Piper, have potent insecticidal activity, and have thus inspired the development of novel insecticides. In this study, piperovatine, a piperamide from Piper piscatorum (Piperaceae), was investigated using a two-electrode voltage clamp to clarify its detailed mode of action against voltage-gated sodium channels, a classic target. In Xenopus oocytes expressing voltage-gated sodium channels from German cockroach (Blattella germanica), piperovatine induced inward currents depending on repetitive openings. For instance, maximal currents were generated with 10 μM piperovatine following 100 trains of depolarizing pulses with frequency 25 Hz. Piperovatine also shifted the half-activation voltage after conditioning pulses from -35 mV to -45 mV. In addition, piperovatine-modified currents were correlated with not only the number of prior conditioning pulses but also the proportion of activated channels. Finally, piperovatine was found to stabilize voltage-gated sodium channels in the fast-inactivated state after opening, and inhibit transition to the slow-inactivated state. These results suggest that piperovatine preferably binds to activated channels and stabilizes voltage sensors at the conformation acquired during depolarization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.