Abstract
Melinacidin, a new antibacterial agent, blocked the synthesis of nicotinic acid and its amide in Bacillus subtilis cells. The inhibitory activity of the agent was reversed by nicotinic acid, its amide, or nicotinamide adenine dinucleotides, but not by l-kynurenine, l-3-hydroxykynurenine, l-hydroxyanthranilic acid, or quinolinic acid. These properties indicated that the antibiotic interferes with the conversion of quinolinic acid to nicotinate ribonucleotide by the enzyme quinolinate phosphoribosyl-transferase. However, the activity of a purified preparation of this enzyme derived from a Pseudomonas strain was not impaired by the antibiotic. This suggested that, in B. subtilis, melinacidin interferes with a reaction which occurs before the formation of quinolinic acid in the biosynthetic pathway leading to nicotinic acid. Failure of quinolinic acid to reverse melinacidin inhibition in B. subtilis cultures might be due to insufficient penetration of the cell membranes by quinolinate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.