Abstract

BackgroundThe FDA approved drug granulocyte-colony stimulating factor (G-CSF) displays anti-apoptotic and immunomodulatory properties with neurogenesis and angiogenic functions. It is known to demonstrate neuroprotective mechanisms against ischemic global stroke. Autophagy is a method for the degradation of intracellular components and in particular, unrestrained autophagy may lead to uncontrolled digestion of affected neurons as well as neuronal death in cerebral ischemia. Mitochondrial dynamics is vital for the regulation of cell survival and death after cerebral ischemia and an early upstream event in neuronal death is mitochondrial fission. We examined the pro-survival mechanisms of G-CSF against apoptosis resulting from autophagy, mitochondrial stress and endoplasmic reticulum (ER) stress.MethodsMale Swiss Webster mice (20 weeks of age) were subjected to bilateral common carotid artery occlusion (BCAO) for 30 min. After occlusion, mice were injected with G-CSF (50 μg/kg) subcutaneously for 4 days. Behavioral analysis was carried out using the corner test and locomotor activity test before animals were sacrificed on day 4 or day 7. Key proteins in ER stress, autophagy and mitochondrial stress induced apoptosis were analyzed by immunoblotting.ResultsG-CSF improved neurological deficits and improved behavioral performance on corner and locomotor test. G-CSF binds to G-CSF receptors and its activation leads to upregulation of Akt phosphorylation (P-Akt) which in turn decreases levels of the ER stress sensor, GRP 78 and expression of proteins involved in ER stress apoptosis pathway; ATF6, ATF4, eIF2α, XBP1, Caspase 12 and CHOP. G-CSF treatment significantly decreased Beclin-1, an autophagy marker, and decreased mitochondrial stress biomarkers DRP1 and P53. G-CSF also up-regulated the mitochondrial fusion protein, OPA1 and anti-apoptotic protein Bcl-2 while down-regulating the pro-apoptotic proteins Bax, Bak and PUMA.ConclusionsG-CSF is an endogenous ligand in the CNS that has a dual activity that is beneficial both in reducing acute neuronal degeneration and adding to long-term plasticity after cerebral ischemia. G-CSF treatment exerts neuroprotective effects on damaged neurons through the suppression of the ER stress and mitochondrial stress and maintains cellular homeostasis by decreasing pro-apoptotic proteins and increasing of anti-apoptotic proteins.

Highlights

  • One of the leading causes of disability and death is stroke

  • The statistical significance of the data was determined with t-test or Effect of granulocyte-colony stimulating factor (G-CSF) treatment on G-CSF receptor (G-CSFR), G-CSF protein and phosphorylated Akt (P-Akt) in Bilateral common carotid artery occlusion (BCAO) mouse stroke model on day 7 G-CSF and its receptor are expressed by neurons in the CNS, and their expression is regulated by ischemia, which points to an autocrine protective signaling mechanism [24]

  • We found the G-CSF treatment can upregulate level of G-CSFR (Fig. 1a) and G-CSF protein (Fig. 1b) in the frontal and middle region of stroke treated group with G-CSF treatment compared to vehicle treated group in BCAO

Read more

Summary

Introduction

One of the leading causes of disability and death is stroke. More than 87% of strokes are ischemic and caused by obstruction of one or more cerebral arteries [1]. An inadequate supply of oxygen and glucose results in an ischemic cascade involving mitochondrial [2] and endoplasmic reticulum (ER) [3] dysfunction. Mitochondrial dynamics is vital for the regulation of cell survival and death; importantly, mitochondrial fission is an early upstream event in neuronal death after cerebral ischemia [4]. DRP1 is vital for mitochondrial fission and cell fate. In mitochondrial fusion, both the inner and outer membranes are controlled by numerous GTPase proteins, including optic atrophy protein 1 (OPA1) [7]. Mitochondrial dynamics is vital for the regulation of cell survival and death after cerebral ischemia and an early upstream event in neuronal death is mitochondrial fission. We examined the pro-survival mechanisms of G-CSF against apoptosis resulting from autophagy, mitochondrial stress and endoplasmic reticulum (ER) stress

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.