Abstract

Modern techniques in dental research continue to assist in the study of the mode of (anticaries) action of topical fluorides. The Plaque Glycolysis and Regrowth Model (PGRM) facilitates the standardized assessments of antimicrobial effects on plaque following use of test formulations in vivo without complications arising from coincident mineral reactivity. In vivo plaque glycolysis testing demonstrates that topically applied fluoride, at conventional levels found in dentifrices, has only modest effects on the metabolic (acid-producing) activity of dental plaque. Any 'plaque' contribution to fluoride efficacy must come from more subtle effects on plaque acidogenicity than those measured in PGRM. The 19-FMAS NMR (Magic Angle Spinning Nuclear Magnetic Resonance) technique provides unambiguous measures of the reaction products of F-enamel interactions. Studies have revealed a new 'reaction product' of fluoride-enamel interactions--designated as Non-Specifically-Adsorbed Fluoride, NSAF. This species, along with FAP (fluoroapatite), FHAP (fluorohydroxyapatite), and CaF2 (calcium fluoride), contributes to the remineralization/demineralization benefits of fluoride. pH cycling and in situ denture chip studies permit quantitative assessments to be made of the relative benefits of fluoride in promoting remineralization and in inhibiting demineralization. Results from pH cycling/in situ experiments are strongly supportive of Koulourides' 'Acquired Acid Resistance' concept, describing fluoride's decay-preventive effects. The continued application of new analytical/physical techniques and testing regimens to the study of fluoride anticaries mechanisms may lead to the development of improved fluoride agents/treatment modalities for the prevention of dental caries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call