Abstract
Albofungin is a promising broad-spectrum antimicrobial compound against multidrug-resistant bacteria. In the present study, we further investigated albofungin's biofilm eradication activity and its potential mode of action against drug-resistant Vibrio parahaemolyticus. Among all derivatives, albofungin exhibited the best antibiofilm and antibacterial activity with rapid killing effects at 0.12 µg mL-1. Confocal microscopy observation exhibited that albofungin disrupted V. parahaemolyticus biofilms by killing or dispersing biofilm cells. Meanwhile, scanning electron microscope and fluorescent staining experiments demonstrated that albofungin rapidly destroyed the integrity and permeability of the bacterial cell membrane. Moreover, this study revealed an antibiofilm mechanism of albofungin involving inhibition of peptidoglycan biosynthesis, flagella assembly pathways, and secretion system proteins in V. parahaemolyticus by quantitative proteomics and validation experiments. Our results highlighted albofungin's mechanism of action in planktonic cells and biofilms and suggested further development and potential applications of albofungin for treating infections caused by penicillins-and-cephalosporins-resistant V. parahaemolyticus. IMPORTANCE Infections caused by multidrug-resistant bacteria, as well as a scarcity of new antibiotics, have become a major health threat worldwide. To tackle the demand for new and effective treatments, we investigated the mechanism of action of albofungin, a natural product derived from Streptomyces, which exhibits potent antimicrobial activity against multidrug-resistant bacteria. Albofungin showed potent biofilm eradication activity against penicillins-and-cephalosporins-resistant Vibrio parahaemolyticus, which expresses a novel metallo-β-lactamase and, thus, reduces their sensitivity to various antibiotics. We observed membrane disruption and permeation mechanisms in planktonic cells and biofilms after albofungin treatment, while albofungin had a weak interaction with bacterial DNA. Moreover, the antibiofilm mechanism of albofungin included inhibition of peptidoglycan biosynthesis, flagellar assembly pathways, and secretion system proteins. Our finding suggested potential applications of albofungin as an antibacterial and antibiofilm therapeutic agent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.