Abstract
AbstractUstilago maydis strains, with low to moderate resistance to fluazinam (Rf ranging from 11.8 to 80), were isolated in a mutation frequency of 0.75 × 10−7 after chemical mutagenesis with N‐methyl‐N‐nitro‐N‐nitrosoguanidine (MNNG). Genetic analysis resulted in the identification of two chromosomal genes. A study of the effect of mutant genes in the phytopathogenic fitness of U. maydis revealed that the resistance mutations had no apparent effect on mycelia growth rate and pathogenicity on young corn plants. Cross‐resistant studies showed that the mutations for resistance to fluazinam were also responsible for resistance to oligomycin, but not to dinitrophenol. A dose‐dependent inhibition of glucose oxidation in whole cells was observed by both fluazinam and oligomycin, and a complete inhibition was found at 40 μg/ml. The results obtained provide strong evidence that the mode of action of fluazinam consists of the inhibition the fungal cell's energy production process through direct inhibition of the ATP synthetase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.