Abstract

When analyzing structures that are comprised of many similar pieces (periodic structures), it is common practice to assume perfect periodicity. Such an assumption will lead to the existence of eigenmodes that are global in character, i.e., the structural deflections will occur throughout the system. However, research in structural mechanics has shown that, when only weak coupling is present between the individual pieces of the system, small amounts of disorder can produce a qualitative change in the character of the eigenmodes. A typical eigenmode of such a system will support motion only over a limited extend of the structure. Often only one or two of the smaller pieces that make up the structure show any motion, the rest remain quiescent. This phenomenon is known as “mode localization”, since the modes become localized at particular locations on the overall structure. This paper will examine the behavior of several circular plates that are coupled together through springs, a system that models a multiple disk computer disk drive. These drives typically consist of several disks mounted on a single spindle, coupled by read/write heads, which act as weak springs, thus leading one to suspect the possibility of localization. Since such an effect would impact accurate read/write operations at small fly heights, the problem deserves attention. Although computer disk drives contain space fixed read/write heads, this paper will consider springs that are fixed to the plates in order to understand the effect of localization on a set of infinite dimensional structures (the circular plates). Later work will extend the model to the case of space fixed springs and the wave behavior and destabilizing effects that such a configuration will induce.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.