Abstract

For crack growth along an interface between dissimilar materials the effect of combined modes I, II and III at the crack-tip is investigated. First, in order to highlight situations where crack growth is affected by a mode III contribution, examples of material configurations are discussed where mode III has an effect. Subsequently, the focus is on crack growth along an interface between an elastic-plastic solid and an elastic substrate. The analyses are carried out for conditions of small-scale yielding, with the fracture process at the interface represented by a cohesive zone model. Due to the mismatch of elastic properties across the interface the corresponding elastic solution has an oscillating stress singularity, and this solution is applied as boundary conditions on the outer edge of the region analyzed. For several combinations of modes I, II and III crack growth resistance curves are calculated numerically in order to determine the steady-state fracture toughness. For given values of K I and K II the minimum fracture toughness corresponds to K III = 0 in most of the range analyzed, but there is a range where the minimum occurs for a nonzero value of K III .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.