Abstract

We consider the quasi-static propagation of a Mode III crack along the interface in a bimaterial plane containing a finite array of small line defects (microcracks and rigid line inclusions). The microdefects are arranged to form a channel around the interface that can facilitate (or prevent) the crack propagation. The two dissimilar elastic materials are assumed to be weakly bonded, so that there is no kinking of the main crack from the straight path. On the basis of asymptotic formulae obtained by the authors, the propagation is analysed as a perturbation problem and the incremental crack advance is analytically derived at each position of the crack tip along the interface relative to the position of the defects. Numerical examples are provided showing potential applications of the proposed approach in the analysis of failure of composite materials. Extension to the case of infinite number of defects is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.