Abstract

Fracture characterization under mode II loading of a hybrid laminate composed by a unidirectional carbon fiber-epoxy composite and cork was performed using the End Notched Flexure test. A data reduction scheme based on equivalent crack length concept, specimen compliance and Timoshenko beam theory was applied to evaluate fracture toughness under mode II loading of a composed beam (cork and carbon-epoxy composite). The adopted procedure depends exclusively on the data issuing from load–displacement (P–δ) curve and does not require crack length monitoring during the test which is a difficult task to be accomplished with the necessary accuracy in the ENF test. A numerical analysis using cohesive zone modeling and an inverse procedure was performed to assess the mode II cohesive law that simulates the material fracture under shear loading. It was concluded that hybridization is advantageous relative to monolithic carbon-epoxy laminate in which concerns the observed failure mode, which altered from typically brittle to very ductile thus contributing to avoid sudden shear failures in real applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.