Abstract

Thermoplastic veils based on Polyethylene-terephthalate (PET), Polyphenylene-sulfide (PPS) and Polyamide-12 (PA) fibres (∼10μm in diameter) were used to interlay unidirectional (UD), non-crimp fabric (NCF) and 5-Harness satin weave (5H) carbon fibre laminates. The PET and PPS veils remained in a fibrous form and the PA veils melted during the laminate curing process. The results of an end-loaded split test demonstrated significant improvements in the mode-II fracture performance in all cases. In general, interlaying thermoplastic veils was most efficient for toughening the UD laminates, with reduced improvements observed for the 5H and NCF laminates, respectively. The main toughening mechanism of the intact PET and PPS veils was thermoplastic fibre bridging. The melted PA veils mainly improved the fracture toughness of the epoxy at the mid-plane. The different toughening mechanisms of the veils, combined with different fracture mechanisms between the UD, NCF and 5H laminates, resulted in significantly different toughening levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.