Abstract
A n asymptotic solution is given for Mode II dynamic fields in the neighborhood of the tip of a steadily advancing crack in an incompressible elastic—perfectly-plastic solid (plane strain). It is shown that, like for Modes I and III (G ao and N emat-N asser, 1983), the complete dynamic solution for Mode II predicts a logarithmic singularity for the strain field, but unlike for those modes which involve no elastic unloading, the pure Mode II solution includes two elastic sectors next to the stress-free crack surfaces. This is in contradiction to the quasi-static solution which predicts a small central plastic zone, followed by two large elastic zones, and then two very small plastic zones adjacent to the stress-free crack faces. The stress field for the complete dynamic solution varies throughout the entire crack tip neighborhood, admitting finite jumps at two shock fronts within the central plastic sector. This dynamic stress field is consistent with that of the stationary crack solution, and indeed reduces to it as the crack growth speed becomes zero.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.