Abstract

The failure process of mode II delamination fracture is studied on the basis of the microscopic matrix failure modes (microcracks and hackles) as well as fracture mechanics principles. The crack tip matrix stresses leading to delamination is analysed by examining an adhesive bond with a crack analogous to a delamination crack in the resin layer of a composite. Such crack tip stresses induce matrix microcracks involving two major events: (a) single microcrack initiation and (b) development of multiple microcracks with regular spacing. The microcrack initiation shear stress τ* is found by the use of fracture mechanics to be related to certain resin properties (shear modulus G and mode I fracture toughness GIC) and microcrack length of the order of the resin layer thickness t (related to resin content).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.