Abstract
This paper presents a method using Peridynamic Theory (PD) to model delamination failure in a unidirectional (UD) composite specimen under Mode II and mixed mode loading conditions. The original brittle damage model in PD is modified as a bilinear law in order to capture progressive softening. The proposed constitutive relations are implemented in bond-based PD formulation under plane stress conditions. The PD model of the End Notched Flexure (ENF) and Mixed Mode Bending (MMB) test specimens are generated using a MATLAB code. The PD model of the specimens are implemented in Finite Element Analysis (FEA) software ABAQUS. PD solutions of force displacement curves are obtained with explicit time integration scheme in ABAQUS. The PD solutions are verified using the analytical and FEA results from the literature and the analytical solutions of ENF and MMB problems using Corrected Beam Theory (CBT). In addition to PD solutions, FEA of the ENF and MMB problems are performed using Cohesive Zone Modelling (CZM) approach. It is observed that the PD results obtained with bilinear material law are in good agreement with both FEA, analytical results and the results from the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.