Abstract

AbstractIn this study, three‐point bending tests were carried out on notched beams to investigate mode I crack propagation in plain concrete under fatigue. The first part of the study focused on microscopic observations of the crack growth features. Microscopic observations were made using the replica method associated with scanning electron microscopy (SEM). Observations of fatigue crack growth both on the surface and inside the specimens are presented as a comparison between the observed crack lengths and those estimated by the compliance calibration method. In the second part, a finite element model of mode I crack propagation under fatigue is presented. According to the cohesive crack concept, a cohesive force distribution on the crack at various loading stages is assumed, according to both the stress‐crack opening relation worked out by Hordijk (1991; Thesis, Technische Universiteit) and a new proposed relation with hysteresis loop. Finite element computation is used to evaluate the crack extension in the bending beams. Numerical predictions are discussed in comparison with experimental results. Copyright © 2002 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.