Abstract
We study helical acoustic metamaterials and demonstrate the ability to vary the materials' dispersion properties by controlling geometrical structure and mass distribution. By locally adding eccentric, higher density elements in the unit cells, we perturb the moment of inertia of the system and introduce centro-asymmetry. This allows controlling the degree of mode coupling and the width of subwavelength bandgaps in the dispersion relation, which are the product of enhanced local resonance hybridization. We characterize the distinct normal modes in our metamaterials using finite element simulations and analytically quantify the coupling between each mode. The evolution of acoustic bandgaps induced by the increasing level of centro-asymmetry is experimentally validated with 3D-printed structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.