Abstract

Solid core photonic bandgap fibers (PBGFs) incorporate a microstructure lattice of high index rods in a low index matrix surrounding a defect core formed by one or several missing rods. Liquids, which can have a wide variety of absorption, gain, nonlinear, and thermal properties, have been used as the high index medium in such fibers. The modal interaction with the liquid is thus an important consideration in the design of solid core PBGFs. We numerically investigate the modal overlap with the high index rods and show that it strongly depends on the core size, and that it has only a weak direct dependence on other lattice properties such as fill fraction, number of rings, or index contrast. We apply our results to calculating the effect of material absorption in the fluid on the transmission properties. We present experimental data which quantitatively confirm our numerical predictions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.