Abstract

This study presents a high-accuracy, all-fiber mode division multiplexing (MDM) reconstructive spectrometer (RS). The MDM was achieved by utilizing a custom-designed 3 × 1 mode-selective photonics lantern to launch distinct spatial modes into the multimode fiber (MMF). This facilitated the information transmission by increasing light scattering processes, thereby encoding the optical spectra more comprehensively into speckle patterns. Spectral resolution of 2 pm and the recovery of 2000 spectral channels were accomplished. Compared to methods employing single-mode excitation and two-mode excitation, the three-mode excitation method reduced the recovered error by 88% and 50% respectively. A resolution enhancement approach based on alternating mode modulation was proposed, reaching the MMF limit for the 3 dB bandwidth of the spectral correlation function. The proof-of-concept study can be further extended to encompass diverse programmable mode excitations. It is not only succinct and highly efficient but also well-suited for a variety of high-accuracy, high-resolution spectral measurement scenarios.Graphical

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call