Abstract

Damping in magnetization dynamics characterizes the dissipation of magnetic energy and is essential for improving the performance of spintronics-based devices. While the damping of ferromagnets has been well studied and can be artificially controlled in practice, the damping parameters of antiferromagnetic materials are nevertheless little known for their physical mechanisms or numerical values. Here we calculate the damping parameters in antiferromagnetic dynamics using the generalized scattering theory of magnetization dissipation combined with the first-principles transport computation. For the PtMn, IrMn, PdMn and FeMn metallic antiferromagnets, the damping coefficient associated with the motion of magnetization ($\alpha_m$) is one to three orders of magnitude larger than the other damping coefficient associated with the variation of the N\'eel order ($\alpha_n$), in sharp contrast to the assumptions made in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call