Abstract
Partial differential equation (PDE) based methods have become some of the most powerful tools for exploring the fundamental problems in signal processing, image processing, computer vision, machine vision and artificial intelligence in the past two decades. The advantages of PDE based approaches are that they can be made fully automatic, robust for the analysis of images, videos and high dimensional data. A fundamental question is whether one can use PDEs to perform all the basic tasks in the image processing. If one can devise PDEs to perform full-scale mode decomposition for signals and images, the modes thus generated would be very useful for secondary processing to meet the needs in various types of signal and image processing. Despite of great progress in PDE based image analysis in the past two decades, the basic roles of PDEs in image/signal analysis are only limited to PDE based low-pass filters, and their applications to noise removal, edge detection, segmentation, etc. At present, it is not clear how to construct PDE based methods for full-scale mode decomposition. The above-mentioned limitation of most current PDE based image/signal processing methods is addressed in the proposed work, in which we introduce a family of mode decomposition evolution equations (MoDEEs) for a vast variety of applications. The MoDEEs are constructed as an extension of a PDE based high-pass filter (Europhys. Lett., 59(6): 814, 2002) by using arbitrarily high order PDE based low-pass filters introduced by Wei (IEEE Signal Process. Lett., 6(7): 165, 1999). The use of arbitrarily high order PDEs is essential to the frequency localization in the mode decomposition. Similar to the wavelet transform, the present MoDEEs have a controllable time-frequency localization and allow a perfect reconstruction of the original function. Therefore, the MoDEE operation is also called a PDE transform. However, modes generated from the present approach are in the spatial or time domain and can be easily used for secondary processing. Various simplifications of the proposed MoDEEs, including a linearized version, and an algebraic version, are discussed for computational convenience. The Fourier pseudospectral method, which is unconditionally stable for linearized the high order MoDEEs, is utilized in our computation. Validation is carried out to mode separation of high frequency adjacent modes. Applications are considered to signal and image denoising, image edge detection, feature extraction, enhancement etc. It is hoped that this work enhances the understanding of high order PDEs and yields robust and useful tools for image and signal analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.