Abstract
AbstractThis paper proposes a new method to identify atmospheric blocking development without the time filtering used in previous studies. A mode-decomposed vorticity equation is formulated from the principal components (PCs) of 500-hPa geopotential height by applying a new idea; the orthonormality of PCs allows any variable to be decomposed into a projection corresponding to the PCs. To test this, sectorial blocking episodes in Northern Hemisphere winter were identified by Barriopedro’s method. A blocking index was defined for each longitudinal range as the linear combination of the 10 largest PCs by means of the composite for the blocking episodes. Blocking development was diagnosed, in terms of the low modes of PC1–PC10 and the high modes of PC11–PC50. The results suggest that the intensification of blocking over the North Pacific and Eurasia is associated with nonlinear interaction among high modes, whereas the intensification (decay) of North Atlantic blocks is related mainly to enhanced nonlinear interaction among low-frequency (high-frequency) eddies. This main result is insensitive to the choice of definition for blocks and the choice of the mode separation boundary.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.