Abstract
We reexamine the convolution approximation commonly used in the mode-coupling theory (MCT) of nonergodic states of classical fluids. This approximation concerns the static correlation functions used as input in the MCT treatment of the dynamics. Besides the hard-sphere model, we consider interaction potentials that present a short-range tail, either attractive or repulsive, beyond the hard core. By using accurate static correlation functions obtained from the fundamental measures functional for hard spheres, we show that the role of three-body direct correlations can be more significant than what is inferred from previous simple ansatzs for pure hard spheres. This may in particular impact the location of the glass transition line and the nonergodicity parameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.