Abstract

We study the properties of the outgoing gravitational wave produced when a non-spinning black hole is excited by an ingoing gravitational wave. Simulations using a numerical code for solving Einstein's equations allow the study to be extended from the linearized approximation, where the system is treated as a perturbed Schwarzschild black hole, to the fully nonlinear regime. Several nonlinear features are found which bear importance to the data analysis of gravitational waves. When compared to the results obtained in the linearized approximation, we observe large phase shifts, a stronger than linear generation of gravitational wave output and considerable generation of radiation in polarization states which are not found in the linearized approximation. In terms of a spherical harmonic decomposition, the nonlinear properties of the harmonic amplitudes have simple scaling properties which offer an economical way to catalog the details of the waves produced in such black hole processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.