Abstract

Mode coupling and power diffusion in multimode step-index (SI) organic glass-clad (OGC) PMMA fiber is examined in this study using the power flow equation (PFE). Using our previously proposed approach we determine the coupling coefficient D for this fiber. When compared to standard multimode SI PMMA fibers, the multimode SI OGC PMMA fiber has similar mode coupling strength. As a result, the fiber length required to achieve the steady-state distribution (SSD) in SI OGC PMMA fibers is similar to that required in standard SI PMMA fibers. We have confirmed that optical fibers with a plastic core show more intense mode coupling than those with a glass core, regardless of the cladding material. These findings could be valuable in communication and sensory systems that use multimode SI OGC PMMA fiber. In this work, we have demonstrated a successful employment of our previously proposed method for determination of the coupling coefficient D in multimode SI OGC PMMA fiber. This method has already been successfully employed in the previous research of mode coupling in multimode SI glass optical fibers, SI PMMA fibers and SI plastic-clad silica optical fibers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.