Abstract

In this work, we have reported a theoretical study of a magnetic photonic crystal waveguide (also called a magneto photonic crystal waveguide). This structure is formed by a triangular lattice of air holes in a bismuth iron garnet (BIG) film, grown on gallium gadolinium garnet substrates. Nonreciprocal TE–TM mode conversion is caused by the Faraday rotation if the magnetization is aligned along the z-axis, parallel to mode of propagation. The properties of this phenomenon are simulated using the beam propagation method. The conversion output has been simulated, and the Faraday rotation and modal birefringence have been calculated by varying the gyrotropy and the thickness of the BIG film. This magnetic photonic crystal waveguide has the advantage of enhancing Faraday rotation in optical isolators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call