Abstract

It is shown that the direction of the photoelectron recoil momentum transferred to the photoion influences molecular photoionization dynamics, resulting in the appearance of a specific mode--channel interdependence. We disclose the interdependence and the interplay of the core-hole- and photoelectron-induced recoil effects by passing to normal mass-dependent modes in both coordinate and momentum spaces. As an example, the vibrational structure of the $1{s}^{\ensuremath{-}1}$ photoelectron line of $\text{C}{\text{O}}_{2}$ is investigated in detail. The intensity of bending and symmetric and asymmetric stretching vibrational and rotational excitations is found to differ substantially in the $\ensuremath{\Sigma}\ensuremath{\rightarrow}\ensuremath{\Sigma}$ and $\ensuremath{\Sigma}\ensuremath{\rightarrow}\ensuremath{\Pi}$ photoionization channels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call