Abstract

We investigate mode characteristics for octagonal resonator microlasers directly connecting an output waveguide. The threshold current of 8 mA at 286 K and single-transverse-mode operation are realized for an octagonal resonator microlaser with a side length of 10.8 μm and a 2-μm-wide vertex output waveguide. The laser spectra of multiple longitudinal modes with mode wavelength intervals of 7-8 nm are observed accompanied with three weak, higher order transverse modes. Furthermore, blueshift of mode wavelength versus the injection current around the threshold current and the far-field patterns are measured and discussed. In addition, the mode characteristics of the octagonal microresonators are simulated by the two-dimensional finite-difference time-domain technique. Two sets of high- <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Q</i> longitudinal modes are observed experimentally and numerically, for the octagonal resonators with the output waveguide connected to the vertex and the midpoint of one side of the resonators, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.