Abstract

In this letter, a multi-task deep convolutional neural network, namely MoDANet, is proposed to perform modulation classification and DOA estimation simultaneously. In particular, the network architecture is designed with multiple residual modules, which tackle the vanishing gradient problem. The multi-task learning (MTL) efficiency of MoDANet was evaluated with different variants of Y-shaped connection and fine-tuning some hyper-parameters of the deep network. As a result, MoDANet with one shared residual module using more filters, larger filter size, and longer signal length can achieve better performance of modulation classification and DOA estimation, but those might result in higher computational complexity. Therefore, choosing these parameters to attain a good trade-off between accuracy and computational cost is important, especially for resource-constrained devices. The network is investigated with two typical propagation channel models, including Pedestrian A and Vehicular A, to show the effect of those channels on the efficiency of the network. Remarkably, our work is the first DL-based MTL model to handle two unrelated tasks of modulation classification and DOA estimation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.