Abstract

The sensations of pressure, flutter, and vibration are psychophysically distinct tactile modalities produced by frequency-specific vibrotactile stimulation of different mechanoreceptors in the skin. The information coded by the different low-threshold mechanoreceptors are carried by anatomically and electrophysiologically distinct pathways that remain separate at least up to and including the input stage of primary somatosensory cortex (SI) in primates, area 3b. Little is known about the functional organization of tactile representation beyond that stage. By using intrinsic optical imaging methods to record from area 1, the second processing stage of SI, we present evidence that pressure, flutter, and vibratory stimuli activate spatially distinct cortical domains in area 1, further strengthening the foundation for modality-specific processing streams in SI. These modality domains exhibit an organization that is unlike the discontinuous modality maps in visual area V2 but more like the continuous visual orientation maps in V1. The results demonstrate that psychophysically distinct sensory modalities can have fundamentally different modes of cortical representation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.