Abstract

The vibration of a railway car body is a superposition of the vibrations of its various modes. It is typically easy to obtain the physical vibration of the car body using sensors in an in situ or a simulated test vehicle. However, it is difficult to determine the modal vibration of the body and its contribution. There are no effective multi-mode vibration control methods for the car bodies. This study proposes a modal vibration decomposition method (MVDM) based on singular value decomposition (SVD) and least squares fitting (LSF). Accordingly, the physical vibration of a railway car body is decomposed into modal vibrations. A method for calculating the modal contribution factor (MCF) is presented, and the dominant flexible modes of the car body are determined and considered the target for the vibration control method. Several pieces of equipment are considered as dynamic vibration absorbers (DVAs) to control the multi-mode vibration of the car body using the dynamic vibration absorption theory and determine the installation parameters of the individual equipment. Finally, the effectiveness of vibration control is verified through dynamic simulations. The results demonstrate the effective decomposition of the physical vibration of the car body into various modal vibrations using the MVDM. This provides accurate data for the MCF calculation and determination of the flexible modes of the car body. The proposed method reduces the vibration of the target modes and improves the ride quality of the railway vehicle. At the optimal damping ratio, the vibration of the DVA-based equipment itself is acceptable. This allows for multi-mode vibration control without requiring extensive modification to the car body structure or suspension system parameters of the vehicle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call