Abstract

In this chapter, the numerical and experimental investigation of the phenomenon of the modal transition in long period fiber gratings (LPGs) coated with a polymeric overlay of nanometric thickness and of high refractive index (HRI) is reported. This layered structure shows a significant modification of the cladding mode distribution with respect to the bare device, which depends on the overlay features (refractive index and thickness) and on the surrounding medium refractive index (SRI). As a consequence, enhanced evanescent wave interaction with the surrounding environment and a powerful guided wave interaction with the overlay itself are obtained. These effects were exploited to build very sensitive refractometers and chemical sensors. Moreover it was shown that the high SRI sensitivity region of the coated LPG can be tuned over the desired SRI range for specific applications by acting on the overlay thickness. The dip-coating technique was adopted to build the thin film coated devices and the syndiotactic polystyrene in its nanoporous form (? form) was used as HRI material, and in particular as molecular sieve for the detection of trace amounts of chloroform in water. The recent applications to chemical sensing of the nano-coated LPGs are reviewed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.