Abstract

We have theoretically studied the modal dispersion characteristics, group velocity, and effective group as well as phase index of refraction of ternary one-dimensional (1D) plasma photonic band gap (PBG) structure having periodic multilayers of three different materials in one unit cell. The dispersion characteristics related for such structure is derived by solving Maxwell wave equation based on principle of Kronig–Penny model. From the computed results we observe that the dispersion characteristics of such structure also show the frequency gap and cutoffs as found in (binary) one-dimensional plasma photonic crystal. The frequency gap is shown to become larger with the increase of plasma frequency as well as plasma width. It is seen that such structure provide additional degree of freedom to control dispersion characteristic, group velocity and effective index of refraction compared to conventional one-dimensional plasma photonic crystal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call