Abstract

The modal parameters of transmission tower-line systems constitute the basis of their wind and seismic design. However, such structures become complicated spatial systems due to the coupling effects between the towers and lines, making it difficult to evaluate the modal parameters of a transmission tower. To study the tower-line coupling effects on the frequencies and mode shapes of a tower, a stochastic subspace identification (SSI) method for identifying modal parameters is first introduced. Then, a finite element model of a transmission tower-line system is established, and the influences of three transmission line parameters, namely, the total span length, span ratio and height difference angle, on the modal parameters are analyzed. An aeroelastic model of the tower-line system is fabricated, and a percussion experiment is performed. The simulated and experimental results both show that the first-order frequency increases with an increase in the total span length but is only slightly affected by changes in the span ratio and the height difference angle. For the wind and seismic design of transmission towers, to obtain reliable natural vibration characteristics, a complete tower-line system model should be established instead of a single tower model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call