Abstract

An accurate prediction for the response of civil and mechanical engineering structures subject to ambient excitation requires the information of dynamic properties of these structures including natural frequencies, damping ratios and mode shapes. Since the excitation force is not available as a measured signal, we need to develop techniques which are capable of accurately extracting the modal parameters from output-only data. This article presents the results of modal parameter identification using two time-domain methods as follows: the autoregressive moving average vector (ARMAV) method and the state–space method. These methods directly work with the recorded time signals and allow the analysis of structures where only the output is measured, while the input is unmeasured and unknown. The equivalence between ARMAV and state–space approaches for the problem of modal parameter identification of vibrating systems is shown in the article. Using only the singular value decomposition of a block Hankel matrix of sample covariances, it is shown that these two approaches give identical modal parameters in the case where the block Hankel matrix has full row rank. The time-domain modal identification algorithms have a serious problem of model order determination: when extracting structural modes these algorithms always generate spurious modes. A modal indicator to differentiate spurious and structural modes is presented. Numerical and experimental examples are given to show the effectiveness of the ARMAV or state–space approaches in modal parameter identification using response data only.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call