Abstract

There are a number of hurdles to overcome when realizing a practical coherent fiber optic communication system; one of them is a narrow linewidth semiconductor laser source with frequency stability. Three mechanisms exist to suppress the side modes of a multimode laser diode: a) frequency selective feedback by incorporating a grating near the active region during growth as in distributed feedback (DFB) or distributed Brag reflection (DBR) laser, b) external feedback where the external cavity length determines the tuned frequency, and c) injection locking the laser diode by using a master laser diode. At present the best sources for coherent communications are obtained by combining mechanisms a) and b); i.e., by adding a long external cavity to an antireflection coated DFB laser. In this report we describe progress made in achieving a single mode laser source by adding a short external cavity to a multimode laser diode. Photon output power per mode as a function of injection current is calculated using rate equations for cases of with and without short external cavity feedback. Experimentally, side mode suppression ratios ranging from 15dB to 26dB are observed in the laboratory using a flat mirror as a feedback element.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.