Abstract

By changing the transverse-mode spectral linewidth of vertical cavity surface emitting lasers (VCSELs) at 850 nm, the directly encoded four-level pulse amplitude modulation data transmission performance over 100-m-long OM4 multimode fiber (MMF) are demonstrated and compared. The multi-mode VCSEL chip with the largest aperture of $11~\mu \text{m}$ reveals the widest spectral linewidth and the highest optical power, but provides the smallest modulation bandwidth to support only 44- and 28-Gb/s data rates for back-to-back (BtB) and 100-m OM4 MMF transmission cases, respectively. By shrinking the aperture size to reduce transverse-mode number, the few-mode VCSEL with the strongest throughput power enables a BtB transmission capacity as high as 52 Gb/s. However, its modal dispersion induced after OM4 MMF transmission inevitably degrade the data rate to 32 Gb/s. In contrast, the single-mode VCSEL with the smallest aperture of $3~\mu \text{m}$ reveals the highest modulation bandwidth and negligible modal dispersion to show competitive BtB transmission capacity with that of the few-mode VCSEL. In particular, the single-mode VCSEL successfully achieves a data rate of 34 Gb/s with a power penalty as low as 1.4 dB, after 100-m OM4 MMF transmission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.