Abstract

Classical intervals have been a very useful tool to analyze uncertain and imprecise models, in spite of operative and interpretative shortcomings. The recent introduction of modal intervals helps to overcome those limitations. In this paper, we apply modal intervals to the field of probability, including properties and axioms that form a theoretical framework applied to the Markovian analysis of Bonus-Malus systems in car insurance. We assume that the number of claims is a Poisson distribution and in order to include uncertainty in the model, the claim frequency is defined as a modal interval; therefore, the transition probabilities are modal interval probabilities. Finally, the model is exemplified through application to two different types of Bonus-Malus systems, and the attainment of uncertain long-run premiums expressed as modal intervals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.